Feature Subset Selection in Intrusion Detection: Using Soft Computing Techniques - Iftikhar Ahmad - 書籍 - LAP LAMBERT Academic Publishing - 9783847344964 - 2012年1月18日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Feature Subset Selection in Intrusion Detection: Using Soft Computing Techniques

価格
¥ 11.521
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月8日 - 2026年1月19日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

Intrusions on computer network systems are major security issues these days. Therefore, it is of utmost importance to prevent such intrusions. The prevention of such intrusions is entirely dependent on their detection that is a main part of any security tool. A variety of intrusion detection approaches are available but the main problem is their performance, which can be enhanced by increasing the detection rates and reducing false positives. PCA has been employed to transform raw features into principal features space and select the features based on their sensitivity. This research applied a GA to search the principal feature space that offers a subset of features with optimal sensitivity. Based on the selected features, the classification is performed. The SVM and MLP are used for classification. This research work uses the KDD dataset. The performance of this approach was analyzed and compared with existing approaches. The results show that proposed method provides an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2012年1月18日
ISBN13 9783847344964
出版社 LAP LAMBERT Academic Publishing
ページ数 220
寸法 150 × 13 × 226 mm   ·   346 g
言語 ドイツ語  

Iftikhar Ahmadの他の作品を見る

すべて表示