Hybrid Methods in Feature Selection: a Data Classification Perspective: Hybrid Feature Selection Methods Are the Proven Methods for Large Scale Feature Selection - Senthamarai Kannan Subramanian - 書籍 - LAP LAMBERT Academic Publishing - 9783844399240 - 2011年6月2日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Hybrid Methods in Feature Selection: a Data Classification Perspective: Hybrid Feature Selection Methods Are the Proven Methods for Large Scale Feature Selection

価格
¥ 7.497
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月12日 - 2026年1月22日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

In recent years, data have become increasingly larger in both number of instances and number of features in many applications. This enormity may cause serious problems to many machine learning algorithms with respect to scalability and learning performance. Therefore, feature selection is essential for the machine learning algorithms while handling high dimensional datasets. Many traditional search methods have shown promising results in a number of feature selection problems. However, as the number of features increases extremely, most of these existing methods face the problem of intractable computational time. Since no single feature selection method could handle all requirements of feature selection in real world datasets, hybrid methods prsented here are the tested methods for effecive Feature Selection. One viable option is to apply a ranking feature selection method to obtain a manageable number of top ranked features which could be further handled by traditional feature selection methods for further analysis.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2011年6月2日
ISBN13 9783844399240
出版社 LAP LAMBERT Academic Publishing
ページ数 64
寸法 150 × 4 × 226 mm   ·   113 g
言語 ドイツ語