Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining - Tomas Arredondo - 書籍 - LAP Lambert Academic Publishing - 9783838337104 - 2010年6月21日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Information Theoretics Based Sequence Pattern Discriminant Algorithms: Applications in Bioinformatic Data Mining 1st edition

価格
¥ 11.639
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月15日 - 2026年1月27日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

This work refers to studies on information-theoretic (IT) aspects of data-sequence patterns and developing discriminant algorithms that enable distinguishing the features of underlying sequence patterns having characteristic, inherent stochastical attributes. Considered in this research are specific details on information-theoretics and entropy considerations vis-á-vis sequence patterns (having stochastical attributes) such as DNA sequences of molecular biology. Applying information-theoretic concepts (essentially in Shannon?s sense), the following distinct sets of metrics are developed and applied in the algorithms developed for data-sequence pattern-discrimination applications: (i) Divergence or cross-entropy algorithms of Kullback-Leibler type and of general Czizár class; (ii) statistical distance measures; (iii) ratio-metrics; (iv) Fisher type linear-discriminant measure; (v) complexity metric based on information redundancy; and a Fuzzy logic based measure. Relevant algorithms are used to test DNA sequences of human and some bacterial organisms.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2010年6月21日
ISBN13 9783838337104
出版社 LAP Lambert Academic Publishing
ページ数 264
寸法 225 × 15 × 150 mm   ·   411 g
言語 ドイツ語