New Archive Based Evolutionary Multi-objective Algorithms: Evolutionary Computation - Xavier Esquivel - 書籍 - LAP LAMBERT Academic Publishing - 9783659184963 - 2012年7月14日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

New Archive Based Evolutionary Multi-objective Algorithms: Evolutionary Computation

価格
¥ 8.788
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月8日 - 2026年1月19日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

In this work we deal with the design of archive based multi-objective evolutionary algorithms (MOEAs) for the numerical treatment of multi objective optimization problems (MOPs). In particular, we design two generational operators­ one mutation and one crossover operator that are tailored to a class of archiving strategies and propose a new evolutionary strategy. Furthermore, we investigate here two widely used indicators for the evaluation of Multi-objective Evolutionary Algorithms, the Generational Distance (GD) and the Inverted Generational Distance (IGD), with respect to the properties of ametric. We de?ne a new performance indicator, ?p, which can be viewed as an ?averaged Hausdor? distance? between the outcome set and the Pareto front and which is composed of (slight modi?cations of) the well-known indicators Generational Distance (GD) and Inverted Generational Distance (IGD). We will discuss theoretical properties of ?p (as well as for GD and IGD) such as the metric properties and the compliance with state-of-the-art multi-objective evolutionary algorithms (MOEAs).

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2012年7月14日
ISBN13 9783659184963
出版社 LAP LAMBERT Academic Publishing
ページ数 124
寸法 150 × 7 × 226 mm   ·   203 g
言語 ドイツ語