History Matching and Uncertainty Characterization: Using Ensemble-based Methods - Alexandre Emerick - 書籍 - LAP LAMBERT Academic Publishing - 9783659107283 - 2012年4月27日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

History Matching and Uncertainty Characterization: Using Ensemble-based Methods

価格
zł 267,90
税抜

遠隔倉庫からの取り寄せ

発送予定日 年12月16日 - 年12月26日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

In the last decade, ensemble-based methods have been widely investigated and applied for data assimilation of flow problems associated with atmospheric physics and petroleum reservoir history matching. Among these methods, the ensemble Kalman filter (EnKF) is the most popular one for history-matching applications. The main advantages of EnKF are computational efficiency and easy implementation. Moreover, because EnKF generates multiple history-matched models, EnKF can provide a measure of the uncertainty in reservoir performance predictions. However, because of the inherent assumptions of linearity and Gaussianity and the use of limited ensemble sizes, EnKF does not always provide an acceptable history-match and does not provide an accurate characterization of uncertainty. In this work, we investigate the use of ensemble-based methods, with emphasis on the EnKF, and propose modifications that allow us to obtain a better history match and a more accurate characterization of the uncertainty in reservoir description and reservoir performance predictions.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2012年4月27日
ISBN13 9783659107283
出版社 LAP LAMBERT Academic Publishing
ページ数 264
寸法 150 × 15 × 226 mm   ·   411 g
言語 ドイツ語