Oil Field Optimization: Optimization and Machine Learning Approaches - Hyokyeong Lee - 書籍 - Scholars' Press - 9783639708622 - 2014年2月7日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Oil Field Optimization: Optimization and Machine Learning Approaches

Hyokyeong Lee

価格
CA$ 79,49
税抜

遠隔倉庫からの取り寄せ

発送予定日 年12月1日 - 年12月11日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

A major task of every oil company is oil field optimization, i.e. maximizing oil production and reducing operational cost. Knowledge about injector-producer relationships (IPRs) is crucial for optimal operation of oil fields. However, inferring IPRs has been a challenging problem due to the unknown underlying structure of oil fields, continuous change of the underlying structure over time, and the large number of wells, i.e. typically, hundreds of injection wells and hundreds of production wells. This book provides two different approaches which map the IPRs problem to a large-scale parameter estimation problem. One approach is constrained nonlinear optimization and the other is machine learning approach. The two approaches demonstrate that not only prediction accuracy but also computational efficiency can be achieved for large-scale parameter estimation problems. This book should help field engineers optimally operate oil fields and show researchers practical examples about how to apply optimization and machine learning techniques to oil field optimization.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2014年2月7日
ISBN13 9783639708622
出版社 Scholars' Press
ページ数 120
寸法 150 × 7 × 226 mm   ·   197 g
言語 ドイツ語