Study of Foreground Image Segmentation Using Support Vector Machines: Supervised Foreground Image Segmentation Using Support Vector Machines (Svm) - Hari Prasad Narasimhaiah - 書籍 - VDM Verlag Dr. Müller - 9783639366624 - 2011年8月4日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Study of Foreground Image Segmentation Using Support Vector Machines: Supervised Foreground Image Segmentation Using Support Vector Machines (Svm)


商品が入荷したらメールで通知を受け取る
プロフィールはありますか? ログイン
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

This book gives a detailed investigation of a supervised image segmentation task using Support Vector Machine (SVM). Support vector machine is considered a good candidate because of its good generalization performance, especially when the number of training samples is very small and the dimension of feature space is very high. An SVM based system constructs a hyper-plane in a higher or infinite dimensional space, which can be used for classification, regression, and other tasks. At first, features are extracted from the training images and class labels are assigned accordingly. Using those features, the system is trained. On finishing the training process test samples are fed to the system. As an output, the trained system will classify image pixels into one of those two classes and we will get a segmented image consisting of two distinct classes. Experimental results show that Support vector machine is a promising technique in image segmentation, which is compared with another supervised method, GMM (Gaussian Mixture Model).

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2011年8月4日
ISBN13 9783639366624
出版社 VDM Verlag Dr. Müller
ページ数 48
寸法 150 × 3 × 226 mm   ·   81 g
言語 英語