Feature Selection for Anomaly Detection in Hyperspectral Data: Algorithms, Methods, and Applications - Songyot Nakariyakul - 書籍 - VDM Verlag - 9783639168280 - 2009年6月30日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Feature Selection for Anomaly Detection in Hyperspectral Data: Algorithms, Methods, and Applications

価格
¥ 11.974
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月19日 - 2026年1月30日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

Over the past decade, use of hyperspectral imagery has been intensively investigated for agricultural product inspection, since it introduces a new noninvasive machine-vision method that gives a very accurate inspection rate. The spectral information in hyperspectral data uniquely characterizes and identifies the chemical and/or physical properties of the constituent parts of an agricultural product that are useful for product inspection. One of the main problems in using these high-dimensional data is that there are often not enough training samples. This book, therefore, provides novel feature selection algorithms to effectively reduce the dimensionality of hyperspectral data. Experimental results comparing the proposed algorithms to other well-known feature selection algorithms are presented for two case studies in chicken carcass inspection. This book provides insightful discussions on feature selection for hyperspectral data for specific food safety applications and should be especially useful to engineers and scientists who are interested in pattern recognition, hyperspectral data processing, food safety research, and data mining.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2009年6月30日
ISBN13 9783639168280
出版社 VDM Verlag
ページ数 184
寸法 150 × 220 × 10 mm   ·   276 g
言語 英語