Group Behavior Recognition Using Dynamic Bayesian Networks: Understanding Intentions, Goals and Actions That Take Place Inside Teams - Konstantinos D. Gaitanis - 書籍 - VDM Verlag Dr. Müller - 9783639126570 - 2009年2月25日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Group Behavior Recognition Using Dynamic Bayesian Networks: Understanding Intentions, Goals and Actions That Take Place Inside Teams

価格
NOK 779
税抜

遠隔倉庫からの取り寄せ

発送予定日 年12月17日 - 年12月30日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

In this PhD thesis we analyze the concepts involved in the decision making of groups of agents and apply these concepts in creating a framework for performing group behavior recognition. We present an overview of the intention theory, as studied by some great theorists such as Searle, Bratmann and Cohen, and show the link with more recent researches. We study the advantages and drawbacks of some techniques in the domain and create a new model for representing and detecting group behaviors, the aim being to create a unified approach of the problem. Most of this thesis is consecrated in the detailed presentation of the model as well as the algorithm responsible for behavior recognition. Our model is tested on two different applications involving human gesture analysis and multimodal fusion of audio and video data. By means of these applications, we advance the argument that multivariate sets of correlated data can be efficiently analyzed under a unified framework of behavior recognition. We show that the correlation between different sets of data can be modeled as cooperation inside a team and that behavior recognition is a modern approach of classification and pattern recognition.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2009年2月25日
ISBN13 9783639126570
出版社 VDM Verlag Dr. Müller
ページ数 188
寸法 150 × 220 × 10 mm   ·   281 g
言語 英語