Bayesian Predictive Inference for Some Linear Models Under Student-t Errors - Azizur Rahman - 書籍 - VDM Verlag - 9783639040869 - 2008年6月12日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Bayesian Predictive Inference for Some Linear Models Under Student-t Errors

価格
元 409
税抜

遠隔倉庫からの取り寄せ

発送予定日 年12月19日 - 2026年1月1日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

In real life often we need to make inferences about the behaviour of the unobserved responses for a model based on the observed responses from the model. Regression models with normal errors are commonly considered in prediction problems. However, when the underlying distributions have heavier tails, the normal errors assumption fails to allow sufficient probability in the tail areas to make allowance for any extreme value or outliers. As well, it cannot deal with the uncorrelated but not independent observations which are common in time series and econometric studies. In such situations, the Student-t errors assumption is appropriate. Traditionally, a number of statistical methods such as the classical, structural distribution and structural relations approaches can lead to prediction distributions, the Bayesian approach is more sound in statistical theory. This book, therefore, deals with the derivation problems of prediction distributions for some widely used linear models having Student-t errors under the Bayesian approach. Results reveal that our models are robust and the Bayesian approach is competitive with traditional methods. In perturbation analysis, process control, optimization, classification, discordancy testing, interim analysis, speech recognition, online environmental learning and sampling curtailment studies predictive inferences are successfully used.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2008年6月12日
ISBN13 9783639040869
出版社 VDM Verlag
ページ数 88
寸法 150 × 220 × 10 mm   ·   127 g
言語 英語  

すべて表示

Azizur Rahmanの他の作品を見る