Garch-like Models with Dynamic Crash Probabilities: a Parametric Approach for Modelling Extreme Events - Paul Koether - 書籍 - VDM Verlag - 9783639014402 - 2008年5月5日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Garch-like Models with Dynamic Crash Probabilities: a Parametric Approach for Modelling Extreme Events

価格
₩ 111.600
税抜

遠隔倉庫からの取り寄せ

発送予定日 年12月17日 - 年12月30日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

We work in the setting of time series of financial returns. Our starting point are the GARCH models, which are very common in practice. We introduce the possibility of having crashes in such GARCH models. A crash will be modeled by drawing innovations from a distribution with much mass on extremely negative events, while in normal times the innovations will be drawn from a normal distribution. The probability of a crash is modeled to be time dependent, depending on the past of the observed time series and/or exogenous variables. The aim is a splitting of risk into normal risk coming mainly from the GARCH dynamic and extreme event risk coming from the modeled crashes. For the ARCH case we formulate (quasi) maximum likelihood estimators and can derive conditions for consistency and asymptotic normality of the parameter estimates. On the practical side we look for the outcome of estimating models with genuine GARCH dynamic and compare the result toclassical GARCH models. We apply the models to Value at Risk estimation and see that in comparison to the classical modelsmany of ours seem to work better although we chose the crash distributions quite heuristically.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2008年5月5日
ISBN13 9783639014402
出版社 VDM Verlag
ページ数 172
寸法 150 × 220 × 10 mm   ·   235 g
言語 英語