Statistical Learning with Sparsity: The Lasso and Generalizations - Chapman & Hall / CRC Monographs on Statistics and Applied Probability - Hastie, Trevor (Stanford University, California, USA) - 書籍 - Taylor & Francis Inc - 9781498712163 - 2015年5月7日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Hastie, Trevor (Stanford University, California, USA)

Statistical Learning with Sparsity: The Lasso and Generalizations - Chapman & Hall / CRC Monographs on Statistics and Applied Probability 第1 版

価格
$ 137,99
税抜

遠隔倉庫からの取り寄せ

発送予定日 年11月25日 - 年12月4日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

他の形態でも入手可能:

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of ?1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.


367 pages, 99 colour illustrations, 11 colour tables

メディア 書籍     Hardcover Book   (ハードカバー付きの本)
リリース済み 2015年5月7日
ISBN13 9781498712163
出版社 Taylor & Francis Inc
ページ数 367
寸法 163 × 244 × 22 mm   ·   742 g
言語 英語