この商品を友人に教える:
Real Numbers, Generalizations of the Reals, and Theories of Continua - Synthese Library Philip Ehrlich 1994 edition
遠隔倉庫からの取り寄せ
クリスマスプレゼントは1月31日まで返品可能です
Real Numbers, Generalizations of the Reals, and Theories of Continua - Synthese Library
Philip Ehrlich
Since their appearance in the late 19th century, the Cantor--Dedekind theory of real numbers and philosophy of the continuum have emerged as pillars of standard mathematical philosophy.
Marc Notes: Includes bibliographical references and index. Table of Contents: Part 0: General Introduction; P. Ehrlich. Part I: The Cantor--Dedekind Philosophy and its Early Reception. On the Infinite and Infinitesimal in Mathematical Analysis, Presidential Address to the London Mathematical Society, November 13, 1902, E. W. Hobson. Part II: Alternative Theories of Real Numbers. A Constructive Look at the Real Number Line; D. S. Bridges. The Surreals and Reals; J. H. Conway. Part III: Extensions and Generalizations of the Ordered Field of Reals: the Late 19th-Century Geometrical Motivation. Veronese's Non-Archimedean Linear Continuum; G. Fisher. Review of Hilbert's Foundations of Geometry; Henri Poincare (1902); Translated for the American Mathematical Society by E. V. Huntington (1903). On Non-Archimedean Geometry, Invited Address to the 4th International Congress of Mathematicians, Rome, April 1908, Giuseppe Veronese; Translated by Mathieu Marion (with editorial notes by Philip Ehrlich). Part IV: Extensions and Generalizations of the Reals: Some 20th-Century Developments. Calculation, Order, and Continuity; H. Sinaceur. The Hyperreal Line; H. J. Keisler. All Numbers Great and Small; P. Ehrlich. Rational and Real Ordinal Numbers; D. Klaua."
Contributor Bio: Ehrlich, P fm.author_biographical_note1
| メディア | 書籍 Hardcover Book (ハードカバー付きの本) |
| リリース済み | 1994年9月30日 |
| ISBN13 | 9780792326892 |
| 出版社 | Springer |
| ページ数 | 288 |
| 寸法 | 156 × 234 × 19 mm · 630 g |
| 言語 | 英語 |
| 編集者 | Ehrlich, P. |