Stochastic Epidemic Models and Their Statistical Analysis - Hakan Andersson - 書籍 - Springer-Verlag New York Inc. - 9780387950501 - 2000年7月19日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Stochastic Epidemic Models and Their Statistical Analysis 2000 edition

価格
¥ 21.865
税抜

遠隔倉庫からの取り寄せ

発送予定日 年1月26日 - 年2月5日
iMusicのウィッシュリストに追加

The present lecture notes describe stochastic epidemic models and methods for their statistical analysis. The reader of these lecture notes could thus have a two-fold purpose in mind: to learn about epidemic models and their statistical analysis, and/or to learn and apply techniques in probability and statistics.


Marc Notes: Includes bibliographical references (p. [128]-133) and index. Table of Contents: I: Stochastic Modelling.- 1. Introduction.- 1.1. Stochastic versus deterministic models.- 1.2. A simple epidemic model: The Reed-Frost model.- 1.3. Stochastic epidemics in large communities.- 1.4. History of epidemic modelling.- Exercises.- 2. The standard SIR epidemic model.- 2.1. Definition of the model.- 2.2. The Sellke construction.- 2.3. The Markovian case.- 2.4. Exact results.- Exercises.- 3. Coupling methods.- 3.1. First examples.- 3.2. Definition of coupling.- 3.3. Applications to epidemics.- Exercises.- 4. The threshold limit theorem.- 4.1. The imbedded process.- 4.2. Preliminary convergence results.- 4.3. The casemn/n > 0 asn? ?.- 4.4. The casemn=mfor alln.- 4.5. Duration of the Markovian SIR epidemic.- Exercises.- 5. Density dependent jump Markov processes.- 5.1. An example: A simple birth and death process.- 5.2. The general model.- 5.3. The Law of Large Numbers.- 5.4. The Central Limit Theorem.- 5.5. Applications to epidemic models.- Exercises.- 6. Multitype epidemics.- 6.1. The standard SIR multitype epidemic model.- 6.2. Large population limits.- 6.3. Household model.- 6.4. Comparing equal and varying susceptibility.- Exercises.- 7. Epidemics and graphs.- 7.1. Random graph interpretation.- 7.2. Constant infectious period.- 7.3. Epidemics and social networks.- 7.4. The two-dimensional lattice.- Exercises.- 8. Models for endemic diseases.- 8.1. The SIR model with demography.- 8.2. The SIS model.- Exercises.- II: Estimation.- 9. Complete observation of the epidemic process.- 9.1. Martingales and log-likelihoods of counting processes.- 9.2. ML-estimation for the standard SIR epidemic.- Exercises.- 10. Estimation in partially observed epidemics.- 10.1. Estimation based on martingale methods.- 10.2. Estimation based on the EM-algorithm.- Exercises.- 11. Markov Chain Monte Carlo methods.- 11.1. Description of the techniques.- 11.2. Important examples.- 11.3. Practical implementation issues.- 11.4. Bayesian inference for epidemics.- Exercises.- 12. Vaccination.- 12.1. Estimating vaccination policies based on one epidemic.- 12.2. Estimating vaccination policies for endemic diseases.- 12.3. Estimation of vaccine efficacy.- Exercises.- References. Publisher Marketing: This book describes stochastic epidemic models and methods for statistically analyzing them. It is aimed at statisticians, biostatisticians, and biomathematicians.

Contributor Bio:  Britton, Tom Britton is the former CEO of a top-rated Houston bank and former two-term chairman of the Houston Northwest Chamber of Commerce. He is also a magician.

メディア 書籍     Book
リリース済み 2000年7月19日
ISBN13 9780387950501
出版社 Springer-Verlag New York Inc.
ページ数 156
寸法 155 × 235 × 8 mm   ·   250 g   (重量(概算))
言語 英語