Improved Exponential Tree Integer Sorting Algorithm Using Node Growth: Sorting  Linear Space Sorting  Deterministic Sorting  Sorting in O (Nloglognlogloglogn)  Exponential Tree Integer Sorting - Ajit Singh - 書籍 - LAP LAMBERT Academic Publishing - 9783848415953 - 2012年3月5日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Improved Exponential Tree Integer Sorting Algorithm Using Node Growth: Sorting Linear Space Sorting Deterministic Sorting Sorting in O (Nloglognlogloglogn) Exponential Tree Integer Sorting

価格
¥ 7.481
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月20日 - 2026年1月30日
iMusicのウィッシュリストに追加

The traditional integer sorting algorithms give a lower bound of O(n log n) expected time without randomization and O(n) with randomization. Recent researches have optimized lower bound for deterministic sorting algorithms. This thesis will present an idea to achieve the complexity of deterministic integer sorting algorithm in O(n log log n log log log n) expected time and linear space. The idea will use Andersson?s exponential tree to perform the sorting with some major modification. Integers will be passed down to exponential tree one at a time but limit the comparison required at each level. The total number of comparison for any integer will be O(log log n log log log n) i.e. total time taken for all integers insertion will be O(n log log n log log log n). The algorithm presented can be compared with the result of Fredman and Willard that sorts n integers in O(n log n / log log n) time in linear space and also with result of Raman that sorts n integers in O(n?(log n log log n)) time in linear space. The algorithm can also be compared with Yijei Han?s result of O(n log log n log log log n) expected time for deterministic linear space integer sorting.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2012年3月5日
ISBN13 9783848415953
出版社 LAP LAMBERT Academic Publishing
ページ数 56
寸法 150 × 3 × 226 mm   ·   102 g
言語 ドイツ語  

Ajit Singhの他の作品を見る

すべて表示