この商品を友人に教える:
Infinite-variance Stable Errors and Robust Estimation Procedures: a Monte Carlo Study with Empirical Applications Fatma Özgü Serttas
遠隔倉庫からの取り寄せ
クリスマスプレゼントは1月31日まで返品可能です
Infinite-variance Stable Errors and Robust Estimation Procedures: a Monte Carlo Study with Empirical Applications
Fatma Özgü Serttas
Gaussian normal error assumption is a basic assumption for co-integration tests. Ordinary Least Squares (OLS) based regression techniques are also widely used together with the normality assumption. To consider the heavy-tailed structure observed in many economic and financial time series, new residual-based co-integration tests are developed and analyzed via Monte Carlo simulations. The new tests are based on Least Absolute Deviation (LAD) regressions, whose error structure follows the infinite-variance stable distribution. Empirical applications on Forward Rate Unbiasedness Hypothesis (FRUH) and Purchasing Power Parity (PPP) verify the need to make use of the infinite-variance stable distributions as the error distributions.
| メディア | 書籍 Paperback Book (ソフトカバーで背表紙を接着した本) |
| リリース済み | 2011年12月1日 |
| ISBN13 | 9783846547328 |
| 出版社 | LAP LAMBERT Academic Publishing |
| ページ数 | 152 |
| 寸法 | 150 × 9 × 226 mm · 244 g |
| 言語 | ドイツ語 |