Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models - Stefanos Giakoumatos - 書籍 - LAP LAMBERT Academic Publishing - 9783838386331 - 2010年8月26日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Bayesian Stochastic Volatility Models: Auxiliary Variable Methods for Stochastic Volatility and Other Time-varying Volatility Models

価格
¥ 11.639
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月15日 - 2026年1月27日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

The phenomenon of changing variance and covariance is often encountered in financial time series. As a result, during the last years researchers focused on the time-varying volatility models. These models are able to describe the main characteristics of the financial data such as the volatility clustering. In addition, the development of the Markov Chain Monte Carlo Techniques (MCMC) provides a powerful tool for the estimation of the parameters of the time-varying volatility models, in the context of Bayesian analysis. In this thesis, we adopt the Bayesian inference and we propose easy-to-apply MCMC algorithms for a variety of time-varying volatility models. We use a recent development in the context of the MCMC techniques, the Auxiliary variable sampler. This technique enables us to construct MCMC algorithms, which only consist of Gibbs steps. We propose new MCMC algorithms for many univariate and multivariate models. Furthermore, we apply the proposed MCMC algorithms to real data and compare the above models based on their predictive distribution

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2010年8月26日
ISBN13 9783838386331
出版社 LAP LAMBERT Academic Publishing
ページ数 240
寸法 150 × 14 × 226 mm   ·   358 g
言語 英語