High Dimensional Clustering and Applications of Learning Methods: Non-redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy - Ying Cui - 書籍 - LAP Lambert Academic Publishing - 9783838300801 - 2009年4月23日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

High Dimensional Clustering and Applications of Learning Methods: Non-redundant Clustering, Principal Feature Selection and Learning Methods Applied to Image- Guided Radiotherapy

価格
¥ 8.897
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月13日 - 2026年1月23日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

This book is divided into two parts. The first part is about non-redundant clustering and feature selection for high dimensional data. The second part is on applying learning techniques to lung tumor image-guided radiotherapy. In the first part, a new clustering paradigm is investigated for exploratory data analysis: find all non-redundant clustering views of the data. Also a feature selection method is developed based on the popular transformation approach: principal component analysis (PCA). In the second part, machine learning algorithms are designed to aid lung tumor image-guided radiotherapy (IGRT). Specifically, intensive studies are preformed for gating and for directly tracking the tumor. For gating, two methods are developed: (1) an ensemble of templates where the representative templates are selected by Gaussian mixture clustering, and (2) a support vector machine (SVM) classifier with radial basis kernels. For the tracking problem, a multiple- template matching method is explored to capture the varying tumor appearance throughout the different phases of the breathing cycle.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2009年4月23日
ISBN13 9783838300801
出版社 LAP Lambert Academic Publishing
ページ数 160
寸法 225 × 9 × 150 mm   ·   256 g
言語 ドイツ語  

Ying Cuiの他の作品を見る

すべて表示