Feature Selection in Data Mining - Approaches Based on Information Theory - Jing Zhou - 書籍 - VDM Verlag Dr. Mueller e.K. - 9783836427111 - 2007年9月10日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Feature Selection in Data Mining - Approaches Based on Information Theory

価格
¥ 7.886
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月13日 - 2026年1月26日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

In many predictive modeling tasks, one has a fixed set of observations from which a vast, or even infinite, set of potentially predictive features can be computed. Of these features, often only a small number are expected to be useful in a predictive model. Models which use the entire set of features will almost certainly overfit on future data sets. The book presents streamwise feature selection which interleaves the process of generating new features with that of feature testing. Streamwise feature selection scales well to large feature sets. The book also describes how to use streamwise feature seleciton in multivariate regressions. It includes a review of traditional feature selecitions in a general framework based on information theory, and compares these methods with streamwise feature selection on various real and synthetic data sets. This book is intended to be used by researchers in machine learning, data mining, and knowledge discovery.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2007年9月10日
ISBN13 9783836427111
出版社 VDM Verlag Dr. Mueller e.K.
ページ数 104
寸法 150 × 220 × 10 mm   ·   176 g
言語 英語  

Jing Zhouの他の作品を見る

すべて表示