この商品を友人に教える:
Conjectures in Arithmetic Algebraic Geometry: a Survey - Aspects of Mathematics Wilfred W. J. Hulsbergen 2nd Ed. 1994. Softcover Reprint of the Original 2n edition
遠隔倉庫からの取り寄せ
クリスマスプレゼントは1月31日まで返品可能です
他の形態でも入手可能:
Conjectures in Arithmetic Algebraic Geometry: a Survey - Aspects of Mathematics
Wilfred W. J. Hulsbergen
In the early 1980's, stimulated by work of Bloch and Deligne, Beilinson stated some intriguing conjectures on special values of L-functions of algebraic varieties defined over number fields. Roughly speaking these special values are determinants of higher regulator maps relating the higher algebraic K-groups of the variety to its cohomology. In this respect, higher algebraic K-theory is believed to provide a universal, motivic cohomology theory and the regulator maps are determined by Chern characters from higher algebraic K-theory to any other suitable cohomology theory. Also, Beilinson stated a generalized Hodge conjecture. This book provides an introduction to and a survey of Beilinson's conjectures and an introduction to Jannsen's work with respect to the Hodge and Tate conjectures. It addresses mathematicians with some knowledge of algebraic number theory, elliptic curves and algebraic K-theory.
246 pages, biography
| メディア | 書籍 Paperback Book (ソフトカバーで背表紙を接着した本) |
| リリース済み | 2013年10月3日 |
| ISBN13 | 9783663095071 |
| 出版社 | Springer Fachmedien Wiesbaden |
| ページ数 | 246 |
| 寸法 | 244 × 172 × 18 mm · 412 g |
| 言語 | 英語 ドイツ語 |