Non-linear Time Series Models: Parametric Estimation Using Estimating Functions - Jesse Mwangi - 書籍 - LAP LAMBERT Academic Publishing - 9783659302015 - 2012年11月14日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Non-linear Time Series Models: Parametric Estimation Using Estimating Functions

価格
¥ 8.852
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月19日 - 2026年1月29日
iMusicのウィッシュリストに追加

In contrast to the traditional time series analysis, which focuses on the modeling based on the first two moments, the nonlinear GARCH models specifically take the effect of the higher moments into modeling consideration. This helps to explain and model volatility especially in financial time series. The GARCH models are able to capture financial characteristics such as volatility clustering, heavy tails and asymmetry. In much of the literature available for the GARCH models, the methods of estimating parameters include the MLE, GMM and LSE which have distributional and optimality limitations. In this book, the Optimal Estimating Function(EF) based techniques are derived for the GARCH models. The EF incorporate the Skewness and the Kurtosis moments which are common in financial data. It is shown using simulations that the Estimating Function (EF) method competes reasonably well with the MLE method especially for the non-normal data and hence provides an alternative estimation technique. Financial analysts, Econometricians and Time series scholars will find this book important in teaching and in risk computation.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2012年11月14日
ISBN13 9783659302015
出版社 LAP LAMBERT Academic Publishing
ページ数 120
寸法 150 × 7 × 225 mm   ·   197 g
言語 ドイツ語