Probabilistic Models for Ontology Learning: Transitivity in Semantic Relation Learning - Fabio Massimo Zanzotto - 書籍 - LAP LAMBERT Academic Publishing - 9783659171406 - 2012年7月19日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Probabilistic Models for Ontology Learning: Transitivity in Semantic Relation Learning

価格
¥ 8.902
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月12日 - 2026年1月22日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning such as semantic networks of words or concepts are knowledge repositories used in a variety of applications. To be effectively used, these networks have to be large or, at least, adapted to specific domains. Our main goal is to contribute practically to the research on semantic networks learning models by covering different aspects of the task. We propose a novel probabilistic model for learning semantic networks that expands existing semantic networks taking into accounts both corpus-extracted evidences and the structure of the generated semantic networks. The model exploits structural properties of target relations such as transitivity during learning. Our model presents some innovations in estimating the probabilities. We then propose two extensions of our probabilistic model: a model for learning from a generic domain that can be exploited to extract new information in a specific domain and an incremental ontology learning system that puts human validations in the learning loop.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2012年7月19日
ISBN13 9783659171406
出版社 LAP LAMBERT Academic Publishing
ページ数 132
寸法 150 × 8 × 226 mm   ·   215 g
言語 ドイツ語