Measuring Glycemic Variability and Predicting Blood Glucose Levels: Using Machine Learning Regression Models - Nigel Struble - 書籍 - LAP LAMBERT Academic Publishing - 9783659168697 - 2014年4月22日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Measuring Glycemic Variability and Predicting Blood Glucose Levels: Using Machine Learning Regression Models

価格
₺ 2.201
税抜

遠隔倉庫からの取り寄せ

発送予定日 年12月15日 - 年12月25日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

This work presents research in machine learning for diabetes management. There are two major contributions:(1) development of a metric for measuring glycemic variability, a serious problem for patients with diabetes; and (2) predicting patient blood glucose levels, in order to preemptively detect and avoid potential health problems. The glycemic variability metric uses machine learning trained on multiple statistical and domain specific features to match physician consensus of glycemic variability. The metric performs similarly to an individual physician?s ability to match the consensus. When used as a screen for detecting excessive glycemic variability, the metric outperforms the baseline metrics. The blood glucose prediction model uses machine learning to integrate a general physiological model and life-events to make patient-specific predictions 30 and 60 minutes in the future. The blood glucose prediction model was evaluated in several situations such as near a meal or during exercise. The prediction model outperformed the baselines prediction models, and performed similarly to, and in some cases outperformed, expert physicians who were given the same prediction problems.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2014年4月22日
ISBN13 9783659168697
出版社 LAP LAMBERT Academic Publishing
ページ数 100
寸法 150 × 6 × 226 mm   ·   167 g
言語 ドイツ語