A Randomized Approximate Nearest Neighbors Algorithm: Theory and Applications - Andrei Osipov - 書籍 - LAP LAMBERT Academic Publishing - 9783659128387 - 2012年5月18日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

A Randomized Approximate Nearest Neighbors Algorithm: Theory and Applications

価格
¥ 8.854
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月16日 - 2026年1月28日
iMusicのウィッシュリストに追加

The classical nearest neighbors problem is formulated as follows: given a collection of N points in the Euclidean space R^d, for each point, find its k nearest neighbors (i.e. closest points). Obviously, for each point X, one can compute the distances from X to every other point, and then find k shortest distances in the resulting array. However, the computational cost of this naive approach is at least (d*N^2)/2 operations, which is prohibitively expensive in many applications. For example, "naively" solving the nearest neighbors problem with d=100, N=1,000,000 and k=30 on a modern laptop can take about as long as a day of CPU time. Fortunately, in such areas as data mining, image processing, machine learning etc., it often suffices to find "approximate" nearest neighbors instead of the "true" ones. In this work, a randomized approximate algorithm for the solution of the nearest neighbors problem is described. It has a considerably lower computational cost than the naive algorithm, and is fairly fast in practical applications. We provide a probabilistic analysis of this algorithm, and demonstrate its performance via several numerical experiments.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2012年5月18日
ISBN13 9783659128387
出版社 LAP LAMBERT Academic Publishing
ページ数 136
寸法 150 × 8 × 226 mm   ·   221 g
言語 ドイツ語  

Andrei Osipovの他の作品を見る

すべて表示