この商品を友人に教える:
Missing Data Problems in Machine Learning: Outline and Contributions Robin Parker
遠隔倉庫からの取り寄せ
クリスマスプレゼントは1月31日まで返品可能です
Missing Data Problems in Machine Learning: Outline and Contributions
Robin Parker
Learning, inference, and prediction in the presence of missing data are pervasive problems in machine learning and statistical data analysis. This thesis focuses on the problems of collaborative prediction with non-random missing data and classification with missing features. We begin by presenting and elaborating on the theory of missing data due to Little and Rubin. We place a particular emphasis on the missing at random assumption in the multivariate setting with arbitrary patterns of missing data. We derive inference and prediction methods in the presence of random missing data for a variety of probabilistic models including finite mixture models, Dirichlet process mixture models, and factor analysis.
| メディア | 書籍 Paperback Book (ソフトカバーで背表紙を接着した本) |
| リリース済み | 2010年6月7日 |
| ISBN13 | 9783639212280 |
| 出版社 | VDM Verlag Dr. Müller |
| ページ数 | 168 |
| 寸法 | 225 × 9 × 150 mm · 254 g |
| 言語 | 英語 |
Robin Parkerのすべてを見る ( 例: Paperback Book および Hardcover Book )