Testing Latent Variable Interaction Effect: Dealing with Data Nonnormality and Model Misspecification - Shaojing Sun - 書籍 - VDM Verlag - 9783639173666 - 2009年6月26日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Testing Latent Variable Interaction Effect: Dealing with Data Nonnormality and Model Misspecification

価格
¥ 10.574
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月19日 - 2026年1月30日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

The book discusses the effects of data nonnormality, model misspecification, sample size, and effect size on testing latent variable interactions through an inspection of the Jöreskog and Yang's (1996) model. Mattson's (1997) method was used to generate nonnormal latent variables in this Monte Carlo study. One covariance parameter was deleted for investigating the influence of misspecified models. The simulation involved a balanced experimental design, with 3 × 2 × 3 × 3 = 54 combinations. Data analysis focused on bias of estimating parameters, standard errors, model fit indexes. Variance partition was conducted to further examine the unique and combined influence of the factors (i.e., data nonnormality, model specification, sample size, effect size). Results indicated that data nonnormality and model misspecification had large effects on fit indexes (e.g., SRMR, RMSEA). Also, severe nonnormality led to a large bias of estimating the interaction effect. Implications of and recommendations for testing latent variable interactions are discussed.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2009年6月26日
ISBN13 9783639173666
出版社 VDM Verlag
ページ数 124
寸法 150 × 220 × 10 mm   ·   190 g
言語 英語