Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations - Oleg Okun - 書籍 - IGI Global - 9781609605575 - 2011年5月31日
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations 第1 版

価格
¥ 43.202
税抜

遠隔倉庫からの取り寄せ

発送予定日 2026年1月19日 - 2026年1月30日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

Machine learning is the branch of artificial intelligence whose goal is to develop algorithms that add learning capabilities to computers. Ensembles are an integral part of machine learning. A typical ensemble includes several algorithms performing the task of prediction of the class label or the degree of class membership for a given input presented as a set of measurable characteristics, often called features.

Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations offers a unique perspective on machine learning aspects of microarray gene expression based cancer classification. This multidisciplinary text is at the intersection of computer science and biology and, as a result, can be used as a reference book by researchers and students from both fields. Each chapter describes the process of algorithm design from beginning to end and aims to inform readers of best practices for use in their own research.

メディア 書籍     Hardcover Book   (ハードカバー付きの本)
リリース済み 2011年5月31日
ISBN13 9781609605575
出版社 IGI Global
ページ数 460
寸法 183 × 254 × 33 mm   ·   997 g
言語 英語  
寄稿者 Oleg Okun

Oleg Okunの他の作品を見る

すべて表示