A Revision on Multicollinearity and Augmentation Methods - Elías Heriberto Arias Nava - 書籍 - LAP LAMBERT Academic Publishing - 9783659507038 - 2014
カバー画像とタイトルが一致しない場合、正しいのはタイトルです

A Revision on Multicollinearity and Augmentation Methods

価格
¥ 5.525
税抜

遠隔倉庫からの取り寄せ

発送予定日 年12月8日 - 年12月18日
クリスマスプレゼントは1月31日まで返品可能です
iMusicのウィッシュリストに追加

This book presents a new augmentation method to eliminate the multicollinearity in datasets that contain several correlated predictor variables. The objective in mind is to reduce the estimation error of the regression coefficients. The main contribution of this work consists in offering a new alternative to eliminate multicollinearity in datasets by using small runs which are added in a sequential manner. The algorithm proposed will indicate the point in which the augmentations have sufficiently contributed to find the true regression model. The procedure is based on addition of new observations to the point in which an appropriate regression model can be constructed. The new information is obtained through designed experiments using the R3 algorithm as a guideline to perform the augmentations and the Ridge Trace and VIF statistic as verification tools that help to determine the point in which the correlations have been significantly reduced. The final result is a linear regression model that accurately represents the process under study.

メディア 書籍     Paperback Book   (ソフトカバーで背表紙を接着した本)
リリース済み 2014
ISBN13 9783659507038
出版社 LAP LAMBERT Academic Publishing
ページ数 76
寸法 150 × 5 × 226 mm   ·   131 g
言語 ドイツ語